Antibiotic-resistant organisms establish reservoirs in new hospital built environments and are related to patient blood infection isolates

Anke Neustadt
  • Al-Tawfiq, J. A. & Tambyah, P. A. Healthcare associated infections (HAI) perspectives. J. Infect. Public Health 7, 339–344 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Ariza-Heredia, E. J. & Chemaly, R. F. Update on infection control practices in cancer hospitals. CA Cancer J. Clin. 68, 340–355 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Burnham, J. P., Olsen, M. A. & Kollef, M. H. Re-estimating annual deaths due to multidrug-resistant organism infections. Infect. Control Hosp. Epidemiol. 40, 112–113 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Rosenthal, V. D., Guzman, S., Migone, O. & Crnich, C. J. The attributable cost, length of hospital stay, and mortality of central line-associated bloodstream infection in intensive care departments in Argentina: a prospective, matched analysis. Am. J. Infect. Control 31, 475–480 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • Giraldi, G., Montesano, M., Sandorfi, F., Iachini, M. & Orsi, G. B. Excess length of hospital stay due to healthcare acquired infections: methodologies evaluation. Ann. Ig 31, 507–516 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Serafim, R. B., Povoa, P., Souza-Dantas, V., Kalil, A. C. & Salluh, J. I. F. Clinical course and outcomes of critically ill patients with COVID-19 infection: a systematic review. Clin. Microbiol. Infect. 27, 47–54 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yilmaz, C. & Ozcengiz, G. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochem. Pharmacol. 133, 43–62 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weiner, L. M. et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. Infect. Control Hosp. Epidemiol. 37, 1288–1301 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hatier, R. & Grignon, G. Ultrastructural study of the Sertoli cell and the limiting membrane in the seminiferous tubule of the adult cryptorchid rat. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 52, 305–318 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weber, D. J., Anderson, D. & Rutala, W. A. The role of the surface environment in healthcare-associated infections. Curr. Opin Infect. Dis. 26, 338–344 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Brooks, B. et al. Strain-resolved analysis of hospital rooms and infants reveals overlap between the human and room microbiome. Nat. Commun. 8, 1814 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lax, S. et al. Bacterial colonization and succession in a newly opened hospital. Sci. Transl. Med. 9, https://doi.org/10.1126/scitranslmed.aah6500 (2017).

  • ElRakaiby, M. T., Gamal-Eldin, S., Amin, M. A. & Aziz, R. K. Hospital microbiome variations as analyzed by high-throughput sequencing. OMICS 23, 426–438 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rampelotto, P. H., Sereia, A. F. R., de Oliveira, L. F. V. & Margis, R. Exploring the hospital microbiome by high-resolution 16S rRNA profiling. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20123099 (2019).

  • Yano, R. et al. Diversity changes of microbial communities into hospital surface environments. J. Infect. Chemother. 23, 439–445 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Mihara, T. et al. Secondary in-hospital epidemiological investigation after an outbreak of Pseudomonas aeruginosa ST357. J. Infect. Chemother. 26, 257–265 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Snitkin, E. S. et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci. Transl. Med. 4, 148ra116 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gotoh, Y. et al. Multi-step genomic dissection of a suspected intra-hospital Helicobacter cinaedi outbreak. Microb. Genom. 4, https://doi.org/10.1099/mgen.0.000236 (2018).

  • Fernando, S. A., Gray, T. J. & Gottlieb, T. Healthcare-acquired infections: prevention strategies. Intern. Med. J. 47, 1341–1351 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Abreu, A. C., Tavares, R. R., Borges, A., Mergulhao, F. & Simoes, M. Current and emergent strategies for disinfection of hospital environments. J. Antimicrob. Chemother. 68, 2718–2732 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Facciola, A. et al. The role of the hospital environment in the healthcare-associated infections: a general review of the literature. Eur. Rev. Med. Pharmacol. Sci. 23, 1266–1278 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Weber, D. J., Rutala, W. A., Miller, M. B., Huslage, K. & Sickbert-Bennett, E. Role of hospital surfaces in the transmission of emerging health care-associated pathogens: norovirus, Clostridium difficile, and Acinetobacter species. Am. J. Infect. Control 38, S25–S33 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Dancer, S. J. The role of environmental cleaning in the control of hospital-acquired infection. J. Hosp. Infect. 73, 378–385 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Costa, D. et al. Nosocomial outbreak of Pseudomonas aeruginosa associated with a drinking water fountain. J. Hosp. Infect. 91, 271–274 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schneider, H. et al. Pseudomonas aeruginosa outbreak in a pediatric oncology care unit caused by an errant water jet into contaminated siphons. Pediatr. Infect. Dis. J. 31, 648–650 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Loveday, H. P. et al. Association between healthcare water systems and Pseudomonas aeruginosa infections: a rapid systematic review. J. Hosp. Infect. 86, 7–15 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Volling, C. et al. Are sink drainage systems a reservoir for hospital-acquired gammaproteobacteria colonization and infection? A systematic review. Open Forum Infect. Dis. 8, ofaa590 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Decraene, V. et al. A large, refractory nosocomial outbreak of klebsiella pneumoniae carbapenemase-producing Escherichia coli demonstrates carbapenemase gene outbreaks involving sink sites require novel approaches to infection control. Antimicrob. Agents Chemother. 62, https://doi.org/10.1128/AAC.01689-18 (2018).

  • Sethi, A. K., Al-Nassir, W. N., Nerandzic, M. M., Bobulsky, G. S. & Donskey, C. J. Persistence of skin contamination and environmental shedding of Clostridium difficile during and after treatment of C. difficile infection. Infect. Control Hosp. Epidemiol. 31, 21–27 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Hakim, H. et al. Gut microbiome composition predicts infection risk during chemotherapy in children with acute lymphoblastic leukemia. Clin. Infect Dis. 67, 541–548 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kuo, F. C. et al. Bloodstream infections in pediatric patients with acute leukemia: emphasis on gram-negative bacteria infections. J. Microbiol. Immunol. Infect. 50, 507–513 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Atkins, S. & He, F. Chemotherapy and beyond: infections in the era of old and new treatments for hematologic malignancies. Infect. Dis. Clin. North Am. 33, 289–309 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • CLSI. M100 performance standards for antimicrobial susceptibility testing (CLSI, 2021).

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wick, R. & Menzel, P. Filtlong. https://github.com/rrwick/Filtlong (2021).

  • Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Marcais, G. et al. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jolley, K. A., Bray, J. E. & Maiden, M. C. J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 3, 124 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Seemann, T. & da Silva, A. G. mlst. https://github.com/tseemann/mlst (2020).

  • Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

  • Yu, G., Lam, T. T.-Y., Zhu, H. & Guan, Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol. Biol. Evol. 35, 3041–3043, (2018).

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Seemann, T. Snippy: rapid haploid variant calling and core genome alignment. https://github.com/tseemann/snippy (2021).

  • Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 2–8 (2006).

  • Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stecher, G., Tamura, K. & Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol. Biol. Evol. 37, 1237–1239 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barido-Sottani, J. et al. Taming the BEAST-A community teaching material resource for BEAST 2. Syst. Biol. 67, 170–174 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rambaut, A., Suchard, M., Nenarokov, S. & Klotzl, F. FigTree. https://github.com/rambaut/figtree/releases (2018).

  • Bouckaert, R. & Heled, J. DensiTree 2: seeing trees through the forest. Preprint at https://www.biorxiv.org/content/10.1101/012401v1 (2014).

  • Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J. & Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 37, 177–192 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sanchez, M. B., Hernandez, A. & Martinez, J. L. Stenotrophomonas maltophilia drug resistance. Future Microbiol. 4, 655–660 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Spigaglia, P., Mastrantonio, P. & Barbanti, F. Antibiotic Resistances of Clostridium difficile. Adv. Exp. Med. Biol. 1050, 137–159 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Berube, B. J., Rangel, S. M. & Hauser, A. R. Pseudomonas aeruginosa: breaking down barriers. Curr. Genet. 62, 109–113 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brooke, J. S. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin. Microbiol. Rev. 25, 2–41 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jang, J. et al. Environmental Escherichia coli: ecology and public health implications-a review. J. Appl. Microbiol. 123, 570–581 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lindblom, A., Karami, N., Magnusson, T. & Ahren, C. Subsequent infection with extended-spectrum beta-lactamase-producing Enterobacteriaceae in patients with prior infection or fecal colonization. Eur. J. Clin. Microbiol. Infect. Dis. 37, 1491–1497 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Karanika, S., Karantanos, T., Arvanitis, M., Grigoras, C. & Mylonakis, E. Fecal colonization with extended-spectrum beta-lactamase-producing enterobacteriaceae and risk factors among healthy individuals: a systematic review and metaanalysis. Clin. Infect. Dis. 63, 310–318 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Bortolaia, V. et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75, 3491–3500 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zankari, E. et al. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J. Antimicrob. Chemother. 72, 2764–2768 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ruiz-Garbajosa, P. & Canton, R. Epidemiology of antibiotic resistance in Pseudomonas aeruginosa. Implications for empiric and definitive therapy. Rev. Esp. Quimioter. 30, 8–12 (2017).

    PubMed 

    Google Scholar
     

  • Cardozo, C., Rico, V., Aguero, D. & Soriano, A. Antibiotic selection in the treatment of acute invasive infections by Pseudomonas aeruginosa. Rev. Esp. Quimioter. 32, 32–34 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez-Olvera, E. M. et al. Antibiotic resistance, virulence factors and genotyping of Pseudomonas aeruginosa in public hospitals of northeastern Mexico. J. Infect. Dev. Ctries 13, 374–383 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • CDC. Antibiotic resistance threats in the United States (CDC, 2019).

  • Weng, M. K. et al. Outbreak investigation of Pseudomonas aeruginosa infections in a neonatal intensive care unit. Am. J. Infect. Control 47, 1148–1150 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Bicking Kinsey, C. et al. Pseudomonas aeruginosa outbreak in a neonatal intensive care unit attributed to hospital tap water. Infect. Control Hosp. Epidemiol. 38, 801–808 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Zhang, Y. et al. Bronchoscope-related Pseudomonas aeruginosa pseudo-outbreak attributed to contaminated rinse water. Am. J. Infect. Control 48, 26–32 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Walker, J. & Moore, G. Pseudomonas aeruginosa in hospital water systems: biofilms, guidelines, and practicalities. J. Hosp. Infect. 89, 324–327 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gbaguidi-Haore, H. et al. A bundle of measures to control an outbreak of Pseudomonas aeruginosa associated with P-trap contamination. Infect. Control Hosp. Epidemiol. 39, 164–169 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Hancock, R. E. & Speert, D. P. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist. Updat 3, 247–255 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feng, Y., Jonker, M. J., Moustakas, I., Brul, S. & Ter Kuile, B. H. Dynamics of mutations during development of resistance by Pseudomonas aeruginosa against five antibiotics. Antimicrob. Agents Chemother. 60, 4229–4236 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bassetti, M., Vena, A., Croxatto, A., Righi, E. & Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context 7, 212527 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • D’Souza, A. W. et al. Spatiotemporal dynamics of multidrug resistant bacteria on intensive care unit surfaces. Nat. Commun. 10, 4569 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bartell, J. A. et al. Omics-based tracking of Pseudomonas aeruginosa persistence in “eradicated” cystic fibrosis patients. Eur. Respir. J. 57, https://doi.org/10.1183/13993003.00512-2020 (2021).

  • Bloomfield, S. et al. Lesser-known or hidden reservoirs of infection and implications for adequate prevention strategies: where to look and what to look for. GMS Hyg. Infect. Control 10, Doc04 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capolongo, S., Stettimo, G. & Gola, M. Analysis of microorganisms in hospital environments and potential risks. Indoor Air Qual. Healthcare Facilities, 53–62 (2017).

  • Julia, L. et al. Environmental reservoirs of nosocomial infection: imputation methods for linking clinical and environmental microbiological data to understand infection transmission. AMIA Annu. Symp. Proc. 2017, 1120–1129 (2017).

    PubMed 

    Google Scholar
     

  • Decker, B. K. & Palmore, T. N. The role of water in healthcare-associated infections. Curr. Opin. Infect. Dis. 26, 345–351 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kizny Gordon, A. E. et al. The hospital water environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections-a systematic review of the literature. Clin. Infect. Dis. 64, 1435–1444 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Chia, P. Y. et al. The role of hospital environment in transmissions of multidrug-resistant gram-negative organisms. Antimicrob. Resist. Infect. Control 9, 29 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chaoui, L., Mhand, R., Mellouki, F. & Rhallabi, N. Contamination of the surfaces of a health care environment by multidrug-resistant (MDR) bacteria. Int. J. Microbiol. 2019, 3236526 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dancer, S. J. Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clin. Microbiol. Rev. 27, 665–690 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hu, H. et al. Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy. J. Hosp. Infect. 91, 35–44 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Russotto, V., Cortegiani, A., Raineri, S. M. & Giarratano, A. Bacterial contamination of inanimate surfaces and equipment in the intensive care unit. J. Intensive Care 3, 54 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boyce, J. M. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob. Resist. Infect. Control 5, 10 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • CDC. Best practices for environmental cleaning in healthcare facilities in resource-limited settings (US Department of Health and Human Services, 2019).

  • Cadnum, J. L. et al. Use of a stop valve to enhance disinfectant exposure may improve sink drain disinfection. Infect. Control Hosp. Epidemiol. 1–3, https://doi.org/10.1017/ice.2018.318 (2018).

  • Jones, J., Cadnum, J., Mana, T., Jencson, A. & Donskey, C. 1226. Application of a foam disinfectant enhances sink drain decontamination in hospital sinks. Open Forum. Infect. Dis., 6, S440-S441 (2019).

  • Kotsanas, D. et al. “Down the drain”: carbapenem-resistant bacteria in intensive care unit patients and handwashing sinks. Med. J. Aust. 198, 267–269 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Leitner, E. et al. Contaminated handwashing sinks as the source of a clonal outbreak of KPC-2-producing Klebsiella oxytoca on a hematology ward. Antimicrob. Agents Chemother. 59, 714–716 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Soothill, J. S. Carbapenemase-bearing Klebsiella spp. in sink drains: investigation into the potential advantage of copper pipes. J. Hosp. Infect. 93, 152–154 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kanamori, H. et al. Genomic analysis of multidrug-resistant Escherichia coli from North Carolina community hospitals: ongoing circulation of CTX-M-Producing ST131-H30Rx and ST131-H30R1 strains. Antimicrob. Agents Chemother. 61, https://doi.org/10.1128/AAC.00912-17 (2017).

  • Pightling, A. W. et al. Interpreting whole-genome sequence analyses of foodborne bacteria for regulatory applications and outbreak investigations. Front. Microbiol. 9, 1482 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lavenir, R. et al. Spatio-temporal analysis of infra-specific genetic variations among a Pseudomonas aeruginosa water network hospital population: invasion and selection of clonal complexes. J. Appl. Microbiol. 105, 1491–1501 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Snitkin, E. S. Contamination of hospital plumbing: a source or a sink for antibiotic-resistant organisms? JAMA Netw. Open 2, e187660 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Ferroni, A. et al. Outbreak of nosocomial urinary tract infections due to Pseudomonas aeruginosa in a paediatric surgical unit associated with tap-water contamination. J. Hosp. Infect. 39, 301–307 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • https://www.nature.com/articles/s43856-022-00124-5

    Next Post

    Kinetic Smart Watch Reviews - Is Kinetic Pro Watch Worth Buying? Read Consumer Review

    Listen to this article Kinetic Smart Watch Reviews – Kinetic Smart Watch is a newly designed wearable smartwatch made for fitness purposes. This watch is the perfect accessory for anyone who wants a healthy lifestyle. Read on to find out its benefits, features, price & customer reviews in my detailed […]